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The reliable identification of protein interaction partners
and how such interactions change in response to physi-
ological or pathological perturbations is a key goal in
most areas of cell biology. Stable isotope labeling with
amino acids in cell culture (SILAC)-based mass spectrom-
etry has been shown to provide a powerful strategy for
characterizing protein complexes and identifying specific
interactions. Here, we show how SILAC can be combined
with computational methods drawn from the business
intelligence field for multidimensional data analysis to im-
prove the discrimination between specific and nonspe-
cific protein associations and to analyze dynamic protein
complexes. A strategy is shown for developing a protein
frequency library (PFL) that improves on previous use of
static “bead proteomes.” The PFL annotates the fre-
quency of detection in co-immunoprecipitation and pull-
down experiments for all proteins in the human proteome.
It can provide a flexible and objective filter for discrim-
inating between contaminants and specifically bound
proteins and can be used to normalize data values and
facilitate comparisons between data obtained in sepa-
rate experiments. The PFL is a dynamic tool that can be
filtered for specific experimental parameters to gener-
ate a customized library. It will be continuously updated
as data from each new experiment are added to the
library, thereby progressively enhancing its utility. The
application of the PFL to pulldown experiments is espe-
cially helpful in identifying either lower abundance or
less tightly bound specific components of protein com-
plexes that are otherwise lost among the large, nonspe-
cific background. Molecular & Cellular Proteomics 9:
861–879, 2010.

Many biological processes are mediated by the action and
regulation of multiprotein complexes and large molecular ma-
chines rather than by individual protein molecules. Protein
functions are often controlled by, and dependent upon, spe-
cific associations with one or more interaction partners, which
can control subcellular localization, catalytic activity, and/or
substrate specificity. Multiprotein complexes also intercon-
nect to form functional networks that are highly dynamic and
reflect the temporal and spatial complexity of cellular activity
(for a review, see Ref. 1). Exploring the dynamics of protein
complexes during biological responses, rather than describ-
ing static snapshots of protein interactions under unique
physiological conditions, will be essential to move from a
descriptive catalogue to a more functional pathway analysis.
Hence, a key goal in cell biology involves identifying specific
protein interaction partners and characterizing the dynamics
of protein complexes and how they interconnect.

Protein complexes can include both stable, long term inter-
actions between core components and transient and dynamic
interactions that are often regulated in response to specific
stimuli or signaling events. Components within multiprotein
complexes can thus interact with a range of different affinities,
resulting in differential loss of specific subunits during isola-
tion or purification. In addition, not all protein subunits are
present in equal stoichiometry, increasing the difficulty of
reliably identifying specific but lower affinity and/or lower
abundance interaction partners when characterizing protein
complexes.

Various biochemical techniques have been used to identify
protein-protein interactions. The most common include yeast
two-hybrid screens and affinity purification procedures, either
using antibodies to endogenous proteins or more frequently
using exogenous expression of tagged recombinant protein
baits. Recently, because of its high sensitivity, MS has be-
come established as the method of choice for identifying
purified proteins. This has been facilitated both by the im-
provements in MS technology and by on-line access to total
genome sequences for many model organisms, including hu-
man (2). The resulting successful combination of different
affinity purification techniques with MS has thus become
widely used as a sensitive method for characterizing and
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comparing protein complexes (for reviews, see Refs. 3–5).
This can be applied in high throughput and used to char-
acterize large interaction networks or “interactomes”. For
example, recent studies exploited a combined affinity puri-
fication-MS approach for the global analysis of protein com-
plexes in yeast, reporting identification of a core set of more
than 2,700 proteins organized into 491 and 547 distinct
complexes, respectively (6, 7).

The high sensitivity of MS technology increases the total
number of proteins identified in each pulldown experiment.
However, the majority of these proteins usually represent
contaminants, including proteins that bind nonspecifically to
the affinity matrix. Thus, despite many technical improve-
ments made in recent years, the unambiguous discrimination
between genuine protein interaction partners, either stable or
transient, and co-purifying contaminants remains one of the
major challenges in the field.

Most researchers have sought to identify specific protein
interactors by reducing or eliminating the background of non-
specific proteins through either biochemical or data analysis
strategies. For example, at the experimental level, the buffer
stringency can be increased to reduce binding of low affinity
contaminants, and a two-step tandem affinity purification
method can be used rather than a one-step procedure (8, 9).
However, this can decrease the yield of protein recovered and
risks losing low abundance and/or lower affinity specific pro-
tein interaction partners. Alternatively, on the data analysis
level, several approaches have been used to identify and
thereby discard the putative contaminants that are recovered
after purification. For example, bioinformatics can be used to
measure “confidence scores” by comparing the results of
interaction studies with either predicted protein-protein inter-
action data or previous results described in the literature (10)
or by integrating different properties of the interaction network
generated by the analysis, e.g. interaction bidirectionality, etc.
(11, 12).

The combination of quantitative MS and differential labeling
of proteins with heavy isotopes, especially stable isotope
labeling with amino acids in cell culture (SILAC)1 (13, 14), can
also help to distinguish between specific and nonspecific
binding proteins in a co-immunoprecipitation (co-IP) experi-
ment. This is achieved through the inclusion of an internal
negative control, which allows for direct comparison between
the relative levels of each protein present in the control and
experimental samples (see Fig. 1). SILAC thus objectively
identifies proteins that can bind nonspecifically, e.g. to the

affinity matrix and/or the fusion tag, and highlights by com-
parison proteins that bind specifically to the bait protein (for
reviews, see Refs. 15 and 16). We and others have used this
isotope-based, quantitative MS approach to characterize
both tagged and endogenous protein complexes in mamma-
lian cells (17–20). Related differential isotope-based labeling
strategies, combined with MS, have also been used to ana-
lyze specific binding proteins (21, 22).

However, relying upon isotope labeling ratios alone does
not entirely solve the contaminant problem. Indeed it is often
impossible to establish a threshold ratio level in these exper-
iments that eliminates all of the contaminating proteins with-
out discarding, en passant, genuine interaction partners of
lower abundance and/or lower binding affinity. We previously
addressed this issue by systematically identifying proteins
that frequently occur in pulldown experiments. These proteins
were documented in a “bead proteome,” which provided a
filter to help discriminate between specific interaction part-
ners and the inevitable nonspecific background (20). How-
ever, the bead proteome approach is not a general solution to
the problem because it is a static list of putative contaminants
that is not updatable and that is directly relevant only to a
certain set of experimental conditions.

In this study, we present a methodology for the reliable
identification of specific protein interaction partners and the
characterization of protein complex dynamics that overcomes
limitations with our previous bead proteome approach. We
drew on data analysis strategies from the field of business
intelligence (BI) and applied them to integrate complex data
sets arising from MS pulldown experiments. We used this to
generate a protein frequency library (PFL) that can be cus-
tomized to the conditions of specific experiments and contin-
ually updated. We demonstrate its use both as a specificity
filter to discriminate specific protein interactions and as a tool
to normalize data sets and hence facilitate comparison of
separate experiments.

EXPERIMENTAL PROCEDURES

A step-by-step procedure for triple labeling SILAC-based affinity
purification experiments and data analysis work flow, applied to the
co-IP of either GFP-RNA polymerase II subunit C (Pol2C) or endog-
enous RNA polymerase II subunit A (Pol2A), is described below. Both
tag-based and endogenous pulldown experiments have advantages
and disadvantages. Tagged baits have been used successfully in a
large number of MS-based affinity purification studies and provide a
scalable and general method to identify specific protein interaction
partners. In particular, the GFP tag can be used in a dual strategy
combining both fluorescence microscopy and MS-based proteomics,
which allow comparison of both the dynamics of localization and
composition of protein complexes, respectively (19, 23). GFP has
proven to be an effective tag for MS-based affinity purification
procedures because of its low background of nonspecific interac-
tions and now also because of the efficient recovery possible using
recently developed “GFP-TRAP” affinity matrices (20, 24, 25). All
tags, however, can potentially affect protein structure, resulting in
alteration of both protein function and association with binding
partners. In contrast, co-IP of endogenous proteins avoids several

1 The abbreviations used are: SILAC, stable isotope labeling with
amino acids in cell culture; PFL, protein frequency library; Pol2C, RNA
polymerase II subunit C; Pol2A, RNA polymerase II subunit A; BI,
business intelligence; OLAP, on-line analytical processing; IP, immu-
noprecipitation; IPI, International Protein Index; GFP, green fluorescent
protein; L, light; M, medium; H, heavy; dH2O, distilled H2O; Bis-Tris,
2-[bis(2-hydroxyethyl)amino]-2-(hydroxymethyl)propane-1,3-diol; LTQ,
linear trap quadrupole.
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problems associated with the use of tags because cellular physi-
ology is not perturbed by overexpression of a fusion protein or
through structural changes induced by the tag in the bait protein.
However, this strategy relies on the availability of a specific and
high affinity antibody, which isolates the endogenous bait protein
efficiently, that is often not available.

Tissue Culture—Parental U2OS and stable GFP-Pol2C U2OS cells
were grown in custom-made Dulbecco’s modified Eagle’s medium
(minus arginine and lysine; Invitrogen) supplemented with 10% dia-
lyzed fetal calf serum (Invitrogen) and penicillin/streptomycin (Invitro-
gen). L-Arginine (R0) (84 mg/ml; Sigma) and L-lysine (K0) (146 mg/ml;
Sigma) were added to the “light” (L), L-[13C6]arginine (R6) and
L-4,4,5,5-D4-lysine (K4) (Cambridge Isotope Laboratories) were
added to the “medium” (M), and L-[13C6,15N4]arginine (R10) and
L-[13C6,15N2]lysine (K8) (Cambridge Isotope Laboratories) were added
to the “heavy” (H) media. The amino acid concentrations are based on
the formula for normal Dulbecco’s modified Eagle’s medium (Invitro-
gen). Once prepared, the SILAC medium was mixed well, filtered
through a 0.22-�m filter (Millipore) using a suction pump, and stored
at 4 °C. U2OS cells were grown in 140-mm diameter culture dishes,
and five dishes were used per SILAC condition. Cells were passaged
in SILAC media for at least five to six cell doublings prior to harvesting
to ensure complete incorporation of isotopic amino acids (for reviews,
see Refs. 26 and 27). PBS-based non-enzymatic cell dissociation
buffer (Invitrogen) was used to passage cells as trypsin-EDTA-free
solutions may contain amino acids. Prior to harvesting, U2OS cells
stably expressing GFP-Pol2C that were grown in the heavy medium
were treated with �-amanitin (5 �g/ml) for 16 h. In the case of
endogenous Pol2A co-IP, parental U2OS cells that were grown in the
heavy medium were treated with �-amanitin (5 �g/ml) and leptomycin
B (7 nM) for 16 h.

Preparation of Cellular Extracts—Cells were trypsinized, pelleted,
and resuspended in 5 ml of ice-cold buffer (20 mM Tris, pH 7.5, 10 mM

KCl, 3 mM MgCl2, 0.1% Nonidet P-40, 10% glycerol, and Complete
protease inhibitor mixture (Roche Applied Science)) for 10 min. After
centrifugation at 750 � g for 10 min at 4 °C, cells were subjected to
a second extraction step for 10 min at 4 °C in 1� RIPA buffer (50 mM

Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 0.5% deoxycholate,
and Complete protease inhibitor mixture (Roche Applied Science)).
The baits, were mostly detected in the cellular extracts resulting from
the second extraction which were thus used for the subsequent
steps. Extracts were briefly sonicated on ice (3 � 10 s at full power)
and then cleared by centrifuging at 2,800 � g (3,500 rpm; GH3.8
rotor, Beckman Coulter GS-6) for 10 min at 4 °C, and total protein
concentrations were measured using a Bradford assay.

Immunoaffinity Purification of GFP-tagged and Endogenous Pro-
teins—The type of beads used for each pulldown is an issue that is
worth considering as the efficiency and cleanliness of different types
of beads may vary according to the cell type and the type of extract
used. In our experience, Dynabeads (Invitrogen) work well for nuclear
extracts, whereas Sepharose and agarose beads (GE Healthcare) can
give lower backgrounds when used with cytoplasmic extracts and
whole cell extracts (20).

Prior to endogenous Pol2A IP, monoclonal anti-Pol2A (Euromedex)
and control anti-HA 3F10 (Roche Applied Science) antibodies were
covalently coupled to protein G-Sepharose beads (GE Healthcare) at
1 mg/ml. The beads were incubated with antibody for 1 h at 4 °C and
then washed twice with 10 volumes of 0.1 M sodium borate, pH 9.
Next the beads were incubated with 10 volumes of borate buffer
containing 20 mM dimethyl pimelimidate (Sigma) for 30 min at room
temperature. The beads were pelleted and resuspended with 10
volumes of freshly prepared 20 mM dimethyl pimelimidate in borate
buffer for an additional 30-min incubation. The beads were washed
twice with 10 volumes of ice-cold 50 mM glycine, pH 2.5 to remove

unbound antibody and then washed several times with PBS or RIPA
buffer for use and/or storage at 4 °C.

For the GFP-Pol2C pulldown experiment, extracts from each cell
line were precleared by incubation with protein G-Sepharose beads
alone for 30 min at 4 °C and then mixed in a 1:1:1 ratio based on total
protein concentration. GFP-Pol2C was affinity-purified by incubation
with GFP-TRAP_A affinity matrix (Chromotek) (20, 25) for 1 h at 4 °C
(equivalent of 50 �l of beads/extract). As described above, to recover
transient and dynamic interaction partners that may exchange be-
tween the L, M, and H extracts during the incubation, it is advisable
to keep incubation times as short as possible (less than 1 h).

In the case of GFP pulldowns, it is also possible to perform SILAC
IPs by mixing extracts from control and experimental cell cultures
after the affinity purification step (see Fig. 1B). This method can be
used to preserve transient interactions as it has been shown that an
exchange can occur between transient and dynamic protein interac-
tion partners from different extracts during the incubation with the
affinity matrix. This has been used to compare dynamic and stable
interaction partners using either purification after mixing-SILAC or
mixing after purification-SILAC (28, 29). These studies emphasized
that the identification of specific but transient and dynamic interaction
partners can be challenging.

For endogenous Pol2A IP, cellular extracts were precleared as
described above, and separate IPs were performed in parallel by
incubating the L extracts with the control anti-HA-Sepharose beads
and the M and H extracts with the specific anti-Pol2A-Sepharose
beads (50 �l of beads/extract). Again incubation times were limited to
1 h. Beads were mixed after the IP and then washed.

After the affinity purification step, the affinity matrix was washed
five times with 1� RIPA buffer. To ensure efficient elution of bound
proteins, a bead-equivalent volume of 1% SDS was added, the matrix
was boiled for 10 min, and then a 4� volume of dH2O added. The
matrix was vortexed, and the solution removed and reduced to the
original bead-equivalent volume (and 1% SDS concentration) using a
SpeedVac. Proteins were reduced and alkylated in this solution, first
by the addition of 10 mM DTT (boiled for 2 min) and then by the
addition of 50 mM iodoacetamide (incubated at room temperature in
the dark for 30 min). A small aliquot of 4� lithium dodecyl sulfate
sample buffer (Invitrogen) was added, and proteins were separated by
one-dimensional SDS-PAGE by running halfway down NuPAGE 12%
Bis-Tris gels (Invitrogen). Gels were stained with SimplyBlueTM Saf-
eStain solution (Invitrogen), which is compatible with MS, for 1 h at
room temperature and washed in dH2O overnight prior to excision of
equal slices (five bands per gel lane, cut in 3 � 1-mm pieces). Gel
bands were destained in dH2O and 20 mM NH4HCO3 followed by in
gel-digestion using trypsin in 20 mM NH4HCO3 (Trypsin Gold, Pro-
mega) essentially as described (30). Peptides were extracted from gel
pieces using CH3CN and 1% formic acid, then vacuum-dried, and
resuspended in 1% formic acid solution for analysis by MS. There are
alternative methods for protein digestion including (i) in-solution di-
gestion and (ii) filter-aided sample preparation, which combines ad-
vantages from the two other techniques (31).

Liquid Chromatography-Tandem Mass Spectrometry—Trypsin-di-
gested peptides were separated using an Ultimate U3000 (Dionex
Corp.) nanoflow LC system. 10 �l of sample (a total of 2 �g of protein)
was loaded with a constant flow of 20 �l/min onto a PepMap C18 trap
column (0.3-mm inner diameter � 5 mm; Dionex Corp.). After trap
enrichment, peptides were eluted onto a PepMap C18 nanocolumn
(75 �m � 15 cm; Dionex Corp.) with a linear gradient of 5–35%
solvent B (90% acetonitrile with 0.1% formic acid) over 65 min with a
constant flow of 300 nl/min. The HPLC system was coupled to a linear
ion trap-orbitrap hybrid mass spectrometer (LTQ-Orbitrap XL,
Thermo Fisher Scientific Inc.) via a nanoelectrospray ion source
(Proxeon Biosystems). The spray voltage was set to 1.2 kV, and the
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temperature of the heated capillary was set to 200 °C. Full-scan MS
survey spectra (m/z 335–1800) in profile mode were acquired in the
Orbitrap with a resolution of 60,000 after accumulation of 500,000
ions. The five most intense peptide ions from the preview scan in the
Orbitrap were fragmented by collision-induced dissociation (normal-
ized collision energy, 35%; activation Q, 0.250; and activation time,
30 ms) in the LTQ after the accumulation of 10,000 ions. Maximal
filling times were 1,000 ms for the full scans and 150 ms for the
MS/MS scans. Precursor ion charge state screening was enabled,
and all unassigned charge states as well as singly charged species
were rejected. The lock mass option was enabled for survey scans to
improve mass accuracy. Data were acquired using the Xcalibur
software.

Quantitative Data Analysis—The raw mass spectrometric data files
obtained for each experiment were collated into a single quantitated
data set using MaxQuant (version 1.0.12.31) (32, 33) and the Mascot
search engine (Matrix Science, version 2.2.2) software. Enzyme spec-
ificity was set to that of trypsin, allowing for cleavage N-terminal to
proline residues and between aspartic acid and proline residues.
Other parameters used were: (i) variable modifications, methionine
oxidation and protein N-acetylation; (ii) fixed modifications, cysteine
carbamidomethylation; (iii) database: target-decoy human MaxQuant
(ipi.HUMAN.v3.52.decoy) (containing 148,380 database entries); (iv)
heavy labels: R6K4 and R10K8; (v) MS/MS tolerance, 0.5 Da; (vi)
maximum peptide length, 6; (vii) top MS/MS peaks per 100 Da, 6; (viii)
maximum missed cleavages, 2; (ix) maximum of labeled amino acids,
3; and (x) false discovery rate, 5%. In addition to the false discovery
rate, proteins were considered to be identified if they had at least one
unique peptide, and they were considered quantified if they had at
least one quantified SILAC pair, although data quality (e.g. number of
unique peptides and number of quantification events) was an essen-
tial parameter considered for the confidence given to results. It is
important to keep in mind that SILAC analysis quantifies peptides,
whereas the analysis of interaction partners specifically compares
data for proteins. Because there can be considerable variation in the
number of peptides identified and the accuracy of the quantitation for
each peptide, not all protein values being compared may be equally
robust or reliable. This difference in data quality is also reflected in the
percentage of protein sequence coverage by the peptides identified
for different proteins. In addition, it is possible that peptides identified
can be assigned to specific proteins incorrectly, which can occur
either for proteins expressed as multiple isoforms or where a peptide
arises from a motif or domain shared by more than one protein. The
use of MaxQuant software, as described above, has significantly
improved the reliability and accuracy of peptide quantitation and
assignment to proteins (32, 33). Nonetheless the successful interpre-
tation of data from SILAC analyses must include awareness of the
quality and confidence scores for data concerning every peptide
assigned to each protein identified.

A total of 709 and 696 protein groups were identified in GFP-Pol2C
and Pol2A affinity purification experiments, respectively. Proteins la-
beled as _REV (non-real proteins from the reverse database) were
automatically discarded as well as proteins that did not show any
SILAC M/L, H/L, and H/M ratio. This yielded 604 protein groups for
the GFP-Pol2C pulldown and 618 protein groups for the Pol2A en-
dogenous IP. Average SILAC ratios for each remaining protein group
were plotted in several ways to assess ratio distribution (see Fig. 2B)
and changes in interactions between different conditions tested (see
Fig. 2C).

Sun Model and Multidimensional On-line Analytical Processing
(OLAP) Analysis—The steps involved in creating the sun model and
OLAP cube are detailed below. Initially, a data environment (Pep-
Tracker) was created to manage the experimental data sets gener-
ated by MaxQuant. PepTracker shall be described, in detail, sepa-

rately. The data sets were collated in a relational database
implemented using MySQL and used to generate a PFL. In addition,
extensive metadata were also recorded that describe the conditions
under which experiments were carried out and parameters associ-
ated with the experiments, such as cell type, organism, extract, type
of beads, machine, date, user, antibody, treatment, etc. The relational
database modeled reality by breaking the data into one or more sets,
each of which represented a class of real world entity, for example
protein, experiment, user, etc. This data store was optimal for storage
and transaction-based operations.

Because of the complexity of the analysis and the large volumes of
data involved, a new approach was required. The alternative ap-
proach we adopted made use of BI principles, which include methods
of leveraging data to provide an informed platform for decision mak-
ing. The BI method of analyzing data includes OLAP, which can use
a multidimensional data model that alleviates problems inherent in a
relational database by making it easier to select, navigate, and ex-
plore data. It is also able to provide increased query performance in
comparison with a relational database because the structure sup-
ports preaggregation of the data. Almost all query result times benefit
from this type of precomputation.

When designing the multidimensional structure, the user model,
which is defined by the users’ understanding and perception of the
data, was translated into a logical model. This logical model con-
tained measures and dimensions. The measures are numerical values
from the experimental data that are of interest to researchers, e.g.
ratio, intensity, etc. The dimensions define the various groupings
(often hierarchical) by which users can aggregate the measures, e.g.
treatment, date, and cell cycle. The logical model was then repre-
sented as a sun model (see Fig. 3), which shows the measures in the
center of the diagram and dimensions radiating from the center. The
hierarchies in a dimension are symbolized by the levels marked along
a dimension line. For example, the date dimension is hierarchical and
has year, month, and day levels. In this study, we made use of the
dimensions “bead type” and “cell extract” as filters to obtain custom-
ized PFLs.

The data for the analysis came from three sources: the relational
database within PepTracker described earlier and local versions of
the IPI human and gene ontology databases. To ensure high data
quality and consistency of format, the data were extracted from these
systems, transformed appropriately, and loaded into a central repos-
itory (data warehouse). During this process, appropriate tables were
created to store the data. The measures were incorporated into a fact
table, and the dimensions each became a dimension table. The fact
table maintained a link to all of the related dimension tables, creating
a star schema whereby the dimension tables relate to a central fact
table producing a star shape. This extract, transform, and load proc-
ess is characteristic of most BI systems as is the creation of a data
warehouse. The data in the data warehouse are not updated, but
rather new data sets are appended to the data when they become
available. This method created a data warehouse containing historical
experimental data that are subject-orientated, non-volatile, and well
integrated, existing separately from the operational environment of
the original data.

In terms of the IP data sets, there were a number of decisions that
had to be considered carefully to decide how best to transform the
data into an accurate representation of the user model. This involved
making the determination that proteins should only be included if they
were both identified and quantified in a SILAC experiment. In addition,
it was decided that proteins should be identified via IPI accession
number as this is the identifier type used by the MaxQuant suite to
make protein identifications. Furthermore, because the IPI accession
identifiers are continuously updated, it was decided that proteins
should be mapped to the most current identifier. Thus, multiple oc-
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currences of the same protein accession number in a single experi-
ment should only be allocated the weighting of a single identification
and quantification in the frequency value of any generated protein
library annotation.

The next step involved converting the logical model, designed for
the PFL, to a physical model using the SQL Server Analysis Services
(SSAS) component of Microsoft SQL Server 2005. This physical
model, a multidimensional database, is often known as an OLAP
cube. The OLAP cube was generated from the consistent, clean data
stored in the data warehouse. When generating the OLAP cube, the
data source, fact tables, dimension tables, relationships between fact
and dimension tables, and hierarchies had to be specified. Using this
information, the cube was then processed with all of the data aggre-
gated at defined levels within the multidimensional structure. With the
use of the OLAP cube and its modeling of a range of measures and

dimensions, it was possible to perform a variety of query and analysis
tasks. To extract data from the OLAP cube, a powerful analytical
query language (multidimensional expressions (MDX)) is available that
allows very complex analytical queries to be expressed with ease. In
this study, we used Excel to connect to the OLAP cube and extract
the required data for the PFL. Leveraging the dimensions within the
cube, we were also able to extract subsets of data for customized
PFLs (see Fig. 5).

RESULTS

Multiplex SILAC Identification of Specific Protein Interac-
tions—A standard work flow for triple labeling SILAC-based
pulldown experiments in mammalian cells is summarized in
Fig. 1. This triple labeling strategy enables both the identifi-

FIG. 1. Overview of triple SILAC-based analysis of protein interaction partners. A, metabolic labeling of cells in culture using the triple SILAC
approach can be used to detect specific protein interaction partners and dynamic changes in protein interactions under different biological
conditions. Examples include comparing control conditions with (i) treatment with chemical inhibitors/stress etc., (ii) effect of mutations in the bait
protein, or (iii) isoform-specific interactions. Light medium refers to normal environmental isotopes of carbon, nitrogen, and hydrogen, i.e.“unla-
beled” 12C, 14N, and 1H, whereas medium and heavy media refer to cells grown in medium containing heavy isotope-labeled arginine (R) and lysine
(K) as follows: medium, [13C6]arginine (R6) and 4,4,5,5-D4-lysine (K4); heavy, [13C6,15N4]arginine (R10) and [13C6,15N2]lysine (K8). B, overview
showing the work flow in a representative triple SILAC analysis of protein interactions and their response to inhibitor treatment for either GFP-tagged
or endogenous cell proteins. C, diagram illustrating the SILAC principle of differential labeling and how specific interacting proteins have higher
ratios of heavy isotope-labeled peptides as compared with nonspecific contaminants. D, example of MS spectra for representative peptides
illustrating a specific protein interaction partner (top), an internal contaminant binding nonspecifically to the beads (middle), and an external
environmental contaminant, e.g. keratins (bottom). CTL, control; prot., protein; Ab, antibody; 1D, one-dimensional.
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cation of specific protein interactions and the analysis of
changes occurring in these protein interactions between two
different conditions. This is done by the use of three separate
growth conditions to label cells with different isotopes that
can be resolved and quantitated by MS. The same strategy
can be applied to the pulldown of both tagged and endoge-
nous protein baits (19, 20). A triple SILAC GFP pulldown is
shown in Fig. 1A as an example. An internal control is pro-
vided by cells grown in light (L), i.e. unlabeled (12C, 14N, 1H)
medium, whereas cells stably expressing the GFP-bait fusion
protein are grown either with medium (M) or with heavy (H)
isotope-labeled arginine or lysine amino acids (Fig. 1A). The
cells grown in medium and heavy media are used to compare
changes in specific protein interaction partners between, for
example, (i) control conditions and treatment with chemical
inhibitors/stress etc., (ii) wild-type and mutant forms of the

bait protein, or (iii) two different isoforms of the same protein
(19) (Fig. 1A). Several SILAC experiments can be performed in
parallel to analyze dynamics of protein interactions under
more than two conditions.

A typical experimental procedure for both GFP and endoge-
nous co-IP triple SILAC experiments is described in Fig. 1B (for
details, see “Experimental Procedures”). In brief, cell lysates are
prepared from each of the L, M, and H cell cultures, and the bait
protein and associated interaction partners are immunoaffinity-
purified. Eluted proteins are then in-gel digested with trypsin (or
other proteases), and peptides are analyzed by LC-MS/MS and
quantified using MaxQuant (32, 33).

All affinity purification methods are inevitably linked with the
co-purification of “contaminants” that bind nonspecifically to
the beads and/or to the fusion tag. The SILAC principle of
using differential isotope labeling is shown in Fig. 1C. In a

FIG. 2. Visualization of contaminant profiles and threshold levels. A representative example of a triple SILAC co-IP experiment using
GFP-Pol2C as bait in cells either with or without �-amanitin treatment2 was used to generate the graphs shown. A, graphs showing median
SILAC ratios for every protein group identified and quantified by MaxQuant (604 distinct protein groups) with each protein group plotted on
the x axis and the median SILAC value for that protein group plotted on the y axis. Two arbitrarily chosen thresholds are illustrated (black
horizontal lines in left and right panels). B, representative ratio distribution plots. Data are plotted as a histogram with log2 SILAC ratios on the
x axis and number of proteins for a given ratio on the y axis. Nonspecific contaminants reproducibly cluster in a Gaussian (normal) distribution
centered at �0 (left panel), although the exact mean can deviate from 0 due to experimental variability as seen for the GFP-Pol2C data set (right
panel). C, data from the GFP-Pol2C data set plotted with log2(M/L) SILAC ratio on the x axis and log2(H/M) SILAC ratio on the y axis with each
point corresponding to the ratio value for a specific protein group. The bait protein is shown in red. Putative experimental contaminants
(Experim. contamin.) cluster around the origin.
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triple SILAC pulldown experiment, each identified peptide
thus shows a typical MS spectrum with three main peaks that
correspond to the light, medium, and heavy isotopic forms,
respectively (Fig. 1D). The relative abundance of each distinct
peak area can be efficiently quantified by MaxQuant (32, 33),
which indicates three median ratios (M/L, H/L, and H/M) for
each peptide as well as the median value for all peptides
quantitated for a specific protein. In this strategy, both the bait
protein itself and its specific interaction partners are expected
to have a higher M/L and/or H/L ratio than nonspecific con-
taminants. In contrast, experimental contaminants, e.g. pro-
teins that bind nonspecifically to beads, are expected to have
M/L and H/L ratios close to 1. Proteins that show M/L and H/L
ratios significantly lower than 1 are mostly external contami-
nants, such as keratins, with no incorporation of heavy iso-
topes (Fig. 1D). In summary, the analysis of triple isotope
labeling SILAC co-IP data theoretically allows for (i) the dis-
crimination between contaminants and genuine interaction
partners and (ii) the characterization of changes in protein
complexes under specific biological conditions.

Discriminating Specific from Nonspecific Interaction Part-
ners: Contaminant Profiles and Establishing Thresholds—
Fig. 2 shows an example of data analysis from a representa-
tive SILAC pulldown experiment in which GFP-tagged Pol2C
was affinity-purified from U2OS cells. In this case, after in-gel
digestion, the MS analysis identified and quantitated over
4,000 peptides that were assigned by MaxQuant to 604 hu-
man protein groups. For each protein group (x axis), a median
M/L SILAC ratio was calculated from all of the individual
peptide values determined and is shown plotted on the y axis
(Fig 2A). This shows that a minor group of proteins has a high
SILAC M/L ratio (�2), whereas �80% of the proteins (i.e. over

480 of a total of 604 protein groups) have a SILAC ratio �1.4.
As described above, the former are strong candidates to be
specific interaction partners (Fig. 2A, green columns),
whereas the latter are more likely to be nonspecific interaction
partners. However, experience has shown that some bona
fide specific interaction partners can have SILAC ratios lower
than abundant contaminants (e.g. in the range of �0.6–1.4).
Thus, when setting the threshold to an arbitrary value, it is
important to understand that if the selected threshold is high,
although most (or all) contaminants will be eliminated, low
abundance and/or low affinity genuine interaction partners will
be lost. Conversely, if the chosen threshold value is low with
the aim of identifying all low abundance and/or low affinity
partners, a larger number of contaminants will remain (Fig. 2A,
compare left and right panels). It is therefore not possible to
use a specific ratio value as a threshold that consistently and
unambiguously separates the specific from the nonspecific
interaction partners.

Another way of visualizing the same SILAC pulldown data is
to plot the ratio distribution as a histogram. Thus, for either
M/L, H/L, or H/M SILAC ratios, the number of proteins with
each ratio value is plotted on the y axis against log2 SILAC
ratio values on the x axis (Fig. 2B). Here, nonspecific, exper-
imental contaminants reproducibly cluster in a Gaussian (nor-
mal) distribution centered at the log2 ratio of �0 (which cor-
responds to a SILAC ratio of �1) (Fig. 2B, left panel).
Theoretically, the normal distribution should be centered on a
log2 value of exactly 0, but in practice, this varies between
individual experiments, and the actual mean can be either
higher or lower even for the separate M/L, H/L, and H/M ratios
measured within a single triple SILAC experiment (Fig. 2B,
right panel). In contrast, putative interaction partners are ex-

FIG. 2—continued
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pected to show log2 ratio values greater than the mean of the
Gaussian curve, whereas environmental (external) contami-
nants always have values lower than the central mean value
(Fig. 2B, left panel). The Gaussian curve can be useful to help
refine the analysis of predicted specific interacting proteins
using a mathematical description of the protein distribution.
However, there is still no single ratio value to reliably distin-
guish specific from nonspecific proteins.

Fig. 2C shows a third way of visualizing the data, i.e. by
plotting log2(H/M) (y axis) versus log2(M/L) (x axis) SILAC ratio
values for all proteins identified in the triple SILAC co-IP
experiment using GFP-Pol2C as bait. This visualization pro-
vides an indication of both the specificity of the interaction
(M/L ratio) and the changes occurring between the two con-
ditions tested (H/M ratio). From this graph, it is evident that
most proteins have SILAC ratio values that cluster around the
origin (Fig. 2C, circled proteins). As these proteins have
log2(M/L) and log2(H/M) ratios of approximately 0, they have a
high probability of being contaminants. Because of small
variations in each experiment, e.g. volume differences when
mixing extracts, the contaminants typically cluster around
values that can, however, deviate from 0 (Fig. 2, B, right panel,
and C). In contrast, putative specific interaction partners are
present in the right side of the graph. But as described above
and regardless of how the SILAC pulldown data are visual-
ized, the problem remains that a significant overlap invariably
exists between the SILAC ratio values of specific interaction
partners and contaminating background proteins. Thus, al-
though the SILAC approach is a powerful approach to identify
stable interaction partners, we have observed that relying
upon SILAC ratios alone is often not enough to reliably identify
bona fide interaction partners of lower abundance and/or
lower binding affinity. To address this problem, we sought to
add an additional objective criterion to the analysis. Thus we
developed a strategy based upon systematically annotating
each protein in the proteome with its frequency of detection in
a database of independent co-IP experiments, creating what
we term a PFL. Hence, the PFL provides a probability esti-

mate for each protein to be a contaminant that is independent
of the information given by SILAC ratios and, therefore, can be
applied to analyze both SILAC and label-free data.

Sun Model and Protein Frequency Library—To generate the
PFL, a data environment was created (PepTracker) that will be
described in more detail in a future publication. This data
environment manages MS-based proteomics data, including
the experimental data sets generated by MaxQuant, along
with consistent and reliable metadata descriptors. This
records parameters including cell type, organism, extract
type, type of affinity matrix, mass spectrometer, date, user,
etc. Furthermore, analytical functionality was built into the
system, enabling it to generate a library of protein annota-
tions. Because of the high complexity of the analysis and large
volumes of data involved, our approach takes advantage of BI
principles designed for rapid interactive responses (34) com-
bined with OLAP, which makes use of a multidimensional data
model in preference to a relational database structure.

An OLAP cube manages data in a cubelike structure in
which the edges of the cube represent dimensions, and the
measures are contained within the cube. Data are then ex-
tracted from the cube by traversing the edges. Using the
hierarchies within the dimensions, users can both drill down
and drill up to the required level of detail and make use of
“slice and dice” operations to change the set of dimensions
being viewed. Although an OLAP cube suggests modeling of
only three dimensions, in reality data of n dimensions can be
modeled by OLAP in a hypercube structure.

To quantify the analytical requirements that typify quantita-
tive SILAC pulldown experiments, a logical model was con-
structed. This takes form as a “sun model” (Fig. 3), which
shows the “measures” (e.g. SILAC ratio values, number of
peptides identified, etc.) in the center of the diagram and the
“dimensions” (e.g. type of affinity matrix, type of extract, date,
user, etc.) radiating from the center. The hierarchies that can
exist within each dimension (e.g. date can include year,
month, day, etc.) are symbolized by the levels marked along a
dimension line. This logical model was then concerted to an

FIG. 3. Sun diagram and logical
model of SILAC data. A logical model is
presented in the form of a sun diagram
illustrating the relationship between
Measures and Dimensions captured in a
SILAC experiment. The measures are
typically numerical values from the ex-
perimental data, e.g.“number of pep-
tides.” The dimensions define the vari-
ous groupings (often hierarchical) by
which users can aggregate the mea-
sures, e.g. cell type, date, cell extract,
etc. id, identification.
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OLAP cube implementation (see “Experimental Procedures”
for details of implementation). The PFL was extracted using
the logical model combined with the OLAP cube, focusing on
the measure called “identified.”

The measure called identified signifies whether a given
protein was identified and quantified in a particular co-IP
experiment that is currently in the data repository. The data
repository used here contains 38 SILAC co-IP experiments,
but it is important to note that the PFL can also be generated
using data from non-SILAC, label-free experiments. Proteins
were identified via IPI accession number, which provides a
comprehensive description that is consistent with the output
from MaxQuant. We note that, because of the continuous
updating of IPI identifiers, proteins were mapped to the most
current identifier, and thus multiple occurrences of the same
protein accession number in a single experiment were only
allocated the weighting of a single identification and quantifi-
cation in the frequency value of any generated protein library
annotation. Using the measure called identified, the number of
times each protein appeared in all 38 experiments in the
database was calculated, giving rise to a deduced “frequency
of detection” for each of the 10,623 IPI numbers described by

the data sets. This value was used in the generation of the
PFL.

The PFL graph presented in Fig. 4A shows a visualization of
the frequency of detection plotted against all proteins that
were identified and quantified in any of the 38 experiments. In
this graph, each protein is shown sorted from the highest to
the lowest percentage. Hence, the proteins appearing nearest
the origin of the graph have the highest probability of being
contaminants.

We compared the PFL with the previously characterized
bead proteome, which contains 3,400 separate human IPI
numbers that were frequently found in 27 independent SILAC
pulldown experiments (20). The bead proteome includes
many abundant factors, such as histones and cytoskeleton
and heat shock proteins, and was thus extrapolated to include
most members of these large protein families. Although they
all potentially can behave as common contaminants, not all
are either expressed or detected in every cell type or pulldown
experiment. An overlap of 64% was observed between the
static bead proteome and the PFL as shown in the Venn
diagram (Fig. 4B). The 36% of bead proteome proteins that
were not present in the PFL were mostly additional members

FIG. 4. Protein frequency library construction and validation. A, the sun diagram was used in conjunction with an OLAP cube to analyze
the frequency of protein detection in a database containing data from 38 separate SILAC co-IP experiments. The graph illustrates the frequency
of detection (y axis) for 10,623 separate IPI numbers (x axis). This defines a PFL. B, comparison of data from the current PFL and a previously
determined list of bead proteome contaminants (20). C, correlation between the bead proteome coverage (20) and the PFL with PFL proteins
ranked from highest to lowest detection frequency (left to right). X-ref is cross reference. D, comparison, for each 10% PFL segment, measuring
the number of bead proteome proteins (20) found in that segment versus the total number of proteins found in that segment.
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of large protein families that did not appear in this set of 38
pulldown experiments.

Further comparison shows that most of the common pro-
teins listed in both the bead proteome and PFL appear in the
top 2,000 of 10,623 IPI numbers of the PFL when proteins are
ranked from highest to lowest detection frequency. In con-
trast, only a small fraction of the bead proteome proteins are
found in the bottom (low frequency) end of the PFL (Fig. 4C).
This shows that most contaminants identified in the bead
proteome are associated with a high frequency in the PFL. In
addition, we compared, for each sequential PFL “10%” seg-
ment, i.e. all proteins associated with a PFL frequency range
between 90 and 100%, 80 and 90%, etc., the number of bead
proteome proteins versus the total number of proteins found
in that segment. This shows that almost all proteins with a
high frequency of detection in the PFL (�60%) are also listed
in the bead proteome, whereas most proteins with a low
frequency of detection in the PFL (�20%) are not (Fig. 4D).
These data underline the positive correlation between the PFL
and the bead proteome and validate the utility of the PFL
approach for predicting contaminant proteins. A major advan-
tage of the PFL, as compared with the previous “static” bead
proteome, is that it provides an annotation of proteins that is
both customizable to reflect the details of individual experi-

ments and updatable. Hence, it will increase in accuracy as
new data are added to the data repository.

Filtering of Protein Frequency Library Using Experimental
Parameters—The use of the OLAP cube and its range of
measures and dimensions provide a dynamic list of contam-
inants that can be customized for individual experiments. Fig.
5A shows an example of an interface in PepTracker that can
be used to flexibly specify the parameters (in principle, draw-
ing on all of the dimensions that were incorporated into the
cube) on which the library could be filtered so that an analysis
can be customized to the detailed conditions used for a
specific pulldown experiment. Here, we filtered the PFL using
the dimensions cell extract (Fig. 5B) and bead type (i.e. type of
affinity matrix) (Fig. 5C). Thus, among all 38 SILAC pulldown
experiments in the data repository, only the ones that were
performed with either a specific type of extract (e.g. cytoplas-
mic or nuclear extract) (Fig. 5B) or a specific type of bead (e.g.
Sepharose beads) (Fig. 5C) were used to generate a custom-
ized PFL. This customization feature of the PFL avoids the
need to have a large set of control experiments that exhaus-
tively cover every possible experimental parameter analyzed
by combining the different parameters associated with each
experiment in the data repository and thus increasing the
value of each individual data set. The PFL is thus applicable

FIG. 5. Filtering of PFL using experimental parameters (dimensions). A, using a web-based interface, any individual dimensions within
the data model (corresponding to experimental parameters recorded in the database) can be used in conjunction with the OLAP cube to create
a customized PFL. This is illustrated here for the dimensions cell extract (cytoplasmic and nuclear) (B) and affinity matrix (Sepharose beads)
(C) used for pulldown experiments.

Protein Frequency Library and Protein Interaction Analysis

870 Molecular & Cellular Proteomics 9.5



also for the analysis of low throughput co-IP experiments
when high throughput bioinformatics analysis techniques
aiming to discard contaminants cannot be applied.

Application of PFL Filter to Analysis of Multiprotein Com-
plexes—The PFL was applied to analyze the SILAC data from
the GFP-Pol2C pulldown experiment (Fig. 6A). As this was
performed with Sepharose beads, we filtered the PFL to
generate a Sepharose PFL as in Fig. 5C. A subset of the
Sepharose PFL library is shown where only proteins that were
identified in the GFP-Pol2C data set are displayed, i.e. a
cross-reference between the Pol2C data set and the Sepha-
rose PFL, which gives a total of 2,973 IPI numbers. A contin-
uous color coding (from red to green) was applied to the
graph, representing proteins with highest detection frequency
(red) to the proteins with lowest detection frequency (green)
(Fig. 6A, left panel). The same high (red) to low (green) color
coding was then applied to the log2(H/M) against log2(M/L)
ratio plot (Fig. 6A, right panel). Proteins with high frequency of
detection (red) cluster around the origin, whereas the proteins
with lower frequency of detection (green) spread further across
the graph. This illustrates the strong positive correlation be-
tween proteins that show a high frequency of detection and
proteins that cluster around the origin in this IP experiment,
which is the expected behavior of contaminant proteins.

Next we used the Sepharose PFL to isolate within the
GFP-Pol2C data set a group of proteins predicted to include
predominantly contaminants. This was done by (i) establishing
a threshold value for protein detection frequency and (ii) high-
lighting all proteins in the data set that show a frequency of
detection above that threshold. A threshold value of 100%
corresponds to only those proteins detected in every data set
in the library. A threshold value of 0 instead would include
every protein identified in any data set. We therefore investi-
gated four intermediate frequency thresholds, corresponding
to 80, 60, 40, and 20% frequency of detection. Each was
applied to log2(H/M) versus log2(M/L) ratio plots of the GFP-
Pol2C data set and compared (Fig. 6B). As the threshold value
for the frequency of detection decreases, the number of pro-
teins included in the subset of putative contaminants (high-
lighted in red on the graphs) increases. The majority of these
proteins cluster either at the origin or on the left quadrants of
the graph, exactly as expected if they are indeed contami-
nants. External contaminants, such as keratins, are always
present in the left-hand quadrants. At lower threshold values,
the probability that some specific interacting proteins are also
highlighted is increased. By plotting the PFL frequency value
against the M/L SILAC ratio for every protein in the data set
(Fig. 6C), a threshold value of 40% was chosen because it
retains the main stable interaction partners of the bait and
selects a suitable subset of clustered contaminants for further
normalization of the GFP-Pol2C data set as described below.
The choice of an optimal frequency threshold may vary for
different experiments. However, the threshold value used is
expected to become lower as the number of experiments

used to generate the PFL increases. Although it is currently
not possible to calculate accurately the minimal number of
independent experiments required to provide a reliable PFL,
based upon our current experience, we estimate that at least
10–15 independent pulldown experiments using different
baits constitute a basic requirement.

Use of PFL to Normalize Data Sets—Ideally, samples for
SILAC analysis are prepared identically with no variability in
experimental conditions and with precisely equal amounts of
labeled samples mixed before MS, which should lead to a
normal distribution of SILAC ratios centered on exactly 0.
However, in practice, slight variations in experimental condi-
tions, e.g. pipetting accuracy, etc., are unavoidable, resulting
in minor variations in SILAC ratios and hence in a ratio distri-
bution whose mean deviates from 0 (Fig. 2, B and C). Al-
though this generally does not compromise the interpretation
of data within a given experiment, it can complicate the ac-
curate comparison of separate data sets, i.e. either biological
replicates or independent experiments. Accurate comparison
of separate experiments thus requires that data sets are nor-
malized objectively to compensate for intrinsic variations in
SILAC ratios.

The MaxQuant software provides a method of data normal-
ization that is based on the whole data set in a specific
experiment being analyzed, and this assumes that most pro-
teins should not change between conditions. However, in a
SILAC pulldown experiment, it is expected that specific inter-
acting proteins should change between the three conditions
(L, M, and H). Thus, we make use of the PFL to normalize data
sets by isolating a group of proteins that can confidently be
predicted as mostly contaminants and, hence, whose log
SILAC ratios should be exactly 0.

The normalization process is illustrated for the GFP-Pol2C
data set (Fig. 7A). Using the Sepharose PFL with a threshold
value set to 40% frequency, the resulting proteins with fre-
quency above 40% were isolated within the data set (Fig. 7A,
middle graph), and their median value of SILAC ratios was
calculated for all three conditions (i.e. M/L, H/L, and H/M).
MaxQuant non-normalized SILAC ratios were used, and the
SILAC ratios of external contaminants, e.g. keratins, were
excluded from the normalization process. SILAC ratio values
for all proteins in the data set, including putative contaminants
and specific interactors, were then divided by the correspond-
ing median value. This normalizes the median log ratio value
for the predicted contaminant group to exactly 0 (Fig. 7A, right
panels). The cluster of contaminants is thereby centered on
the origin of the graph (Fig. 7A, bottom graph). This normal-
ization process does not alter the positions of proteins relative
to each other within this experiment but rather globally affects
the ratio values of all the proteins in the data set. The same
normalization process can be applied to any data set, includ-
ing co-IP analysis of an endogenous protein, as shown for the
data set from SILAC affinity purification of endogenous Pol2A
(Fig. 7B).
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Comparative Analysis of Normalized Data Sets—Next we
used the data analysis work flow described above to analyze
normalized GFP-Pol2C pulldown and endogenous Pol2A
co-IP triple SILAC experiments. A customized Sepharose PFL
combined with a frequency threshold of 40% was used (i) to

highlight putative nonspecific contaminants and (ii) to normal-
ize the data sets. Fig. 8 shows the GFP-Pol2C and endoge-
nous Pol2A data sets plotted as log2(H/M) against log2(M/L)
ratios after normalization (Fig. 8, A and B, respectively). The
predicted contaminant-enriched group, i.e. proteins that

FIG. 6. Application of PFL data in identification of specific protein interactors. A, cross-reference (x-ref) between the customized
“Sepharose” PFL data (as in Fig. 5C) and the GFP-Pol2C data set. Continuous color coding from red (highest) to green (lowest) is used
to depict frequency of protein detection (left panel). In the right panel, the same color coding is applied to the log2(H/M) against log2(M/L)
SILAC ratio plot of GFP-Pol2C data set (plot as shown in Fig. 2C). B, comparison of arbitrary threshold values (80, 60, 40, and 20% detection
frequency in PFL) to visualize all proteins in the data set that show a frequency of detection above that threshold (highlighted in red) on the log2

plot of SILAC ratios for the same pulldown experiment shown in A. Lower threshold values result in highlighting of larger number of proteins. C,
the graph shows the PFL frequency (y axis) plotted against the SILAC M/L ratio (x axis) for each protein group in the Pol2C data set. A red line is
drawn indicating the minimum suitable PFL threshold that includes all protein groups with a high M/L ratio in the likely set of putative interaction
partners.
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show a frequency of detection above 40% in the Sepharose
PFL, are shaded in light green, and all other proteins are
shown in dark green.

GFP-Pol2C interaction partners were analyzed in U2OS
cells either with or without �-amanitin treatment (Fig. 8A),
whereas endogenous Pol2A interaction partners were ana-
lyzed in U2OS cells either with or without combined �-aman-
itin and leptomycin B treatment. RNA polymerase II subunits
are marked in blue, and the bait protein is highlighted in red
(Fig. 8, A and B). In the Pol2C co-IP experiment, 11 of the 12
known RNA polymerase II subunits (Pol2A–Pol2L) were de-
tected with high sequence coverage, and a large number of
peptides were identified and quantified (see Table I for GFP-
Pol2C data set). All 12 RNA polymerase II subunits were
identified in the Pol2A co-IP experiment.

If the pulldown efficiency is the same between the two
conditions tested (��-amanitin), the log2(H/M) ratio should be
0 for the bait protein. In practice, this is often not the case due
for example to variations in expression levels, accessibility,
and/or fractionation efficiency induced by the treatment.
Hence, we used the bait protein as a reference point to draw
a second x axis such that proteins falling above the new x axis
line indicate increased interaction with the bait and proteins
falling below indicate decreased interaction as a result of the
treatment. Here, interactions were considered as significantly
affected when a 2-fold or greater change was observed upon
treatment (Table I). The GFP-Pol2C data set shows partial
disassembly of the RNA polymerase II complex after �-aman-
itin treatment (Fig. 8A) because GFP-Pol2C interaction with
many RNA polymerase II subunits, including 2A, 2D, 2E, 2G,
2H, and 2I, is significantly decreased after �-amanitin treat-
ment (Fig. 8A, proteins within the red oval). However, some
subunits remain associated, and new protein interaction part-
ners were also identified, suggesting that intermediate sub-
complexes are formed upon �-amanitin treatment. The same
approach was applied to analyze the Pol2A data set, showing
that Pol2A interaction with all RNA polymerase II subunits,
except Pol2H, is decreased after treatment with both �-aman-
itin and leptomycin B (Fig. 8B, proteins within the red oval). A
more detailed analysis and discussion of these data charac-

terizing the formation of subcomplexes during RNA polymer-
ase II assembly is presented elsewhere.2

Importantly, although high SILAC M/L ratios unambiguously
identify specific interaction partners, the application of the PFL
to the data set can help identify additional specific interaction
partners otherwise missed because their lower SILAC ratios
overlap with nonspecific contaminants. This overlap is particu-
larly visible for proteins with a SILAC M/L ratio �3 (Fig. 8C, dark
and light green columns). By highlighting all predicted contam-
inants (frequency of detection �40%), the PFL approach helps
to focus on the remaining putative specific interaction partners.
For example, many proteins of the R2TP/prefoldin-like complex,
i.e. UXT, RUVBL1/2, PFDN2/6, and PDRG1, were not identified
in the Pol2C data set with high SILAC M/L ratios but show a
frequency value below 40% (see Table II and Fig. 8D, purple
data points). Interestingly, the R2TP/prefoldin-like complex has
been connected to the RNA polymerase II complex (11, 35).
This shows that these proteins are indeed bona fide interaction
partners of Pol2C that would have been overlooked in the
analysis without the PFL. In summary, the PFL approach com-
bined with triple SILAC experiments has been shown to provide
an effective and flexible work flow for the detection and analysis
of specific interactions within multiprotein complexes.

DISCUSSION

In this study, we have introduced the use of data analysis
technology adapted from the field of BI to improve the reli-
ability of discriminating specific from nonspecific protein in-
teraction partners. Although this approach is broadly applica-
ble to a wide range of protein interaction analyses, we focus
here on describing an enhanced methodology for the analysis
of triple SILAC immunoaffinity purification experiments. This
identifies genuine protein interaction partners more efficiently
and also aids the characterization of changes in protein com-
plexes that can arise either as a result of varied biological
conditions or in response to specific perturbations. To date,
there are still relatively few studies that have explored the
dynamics of protein-protein interactions using quantitative
proteomics-based approaches (17, 36). A major aim of the
methodology described in this study is to facilitate such anal-
yses. In contrast with other common approaches, our work
flow discourages the premature removal of putative contam-
inant proteins either experimentally or in silico. Instead, we
adopt a comprehensive and inclusive approach that takes
advantage of the high sensitivity of protein detection now
possible using MS-based identification of proteins from
model organisms. We use interactive analysis that integrates
several objective criteria to annotate, rather than discard, all
proteins in every data set. This is of particular importance for
the detection and characterization of low affinity and/or low

2 S. Boulon, B. Pradet-Balade, C. Verheggen, D. Molle, M. Geor-
gieva, K. Azzag, Y. Ahmad, H. Neel, A. I. Lamond, and E. Bertrand,
submitted manuscript.
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FIG. 7. Normalization of data sets using PFL. A, graphs show log2 SILAC ratio plots of total proteins identified from co-IP using GFP-Pol2C
as bait before normalization or threshold analysis (i) and after application of a 40% Sepharose PFL threshold filter with the plot now showing
only putative contaminants (light green), i.e., proteins with PFL values over 40% (ii) and total data set replotted after normalization to set the
median SILAC log2 ratio value of predicted contaminants to 0 (iii). Predicted contaminants are shaded in light green, and other proteins are
shown in dark green. The effect of this normalization procedure on the Gaussian ratio distribution curves for the three separate M/L, H/L, and

Protein Frequency Library and Protein Interaction Analysis

874 Molecular & Cellular Proteomics 9.5



abundance specific protein interaction partners that would
otherwise remain undetected among the large excess of
background contaminants and nonspecific interactors.

An important issue in all MS-based protein identification
studies is the reliability of protein identification and quantifi-
cation. Although analyses of biological responses are mostly

H/M values recorded in the triple SILAC analysis is shown in parallel on the right for i–iii in the form of SILAC ratio distribution histograms (as
in Fig. 2B). B, repeat of the normalization procedure shown above using data from a separate triple SILAC co-IP experiment using antibodies
to an endogenous protein (Pol2A) rather than a GFP-tagged bait.

FIG. 8. Analysis of protein interaction dynamics using normalized data sets. A and B, graphs are log2 SILAC M/L versus H/M ratios
comparing normalized data sets from triple SILAC experiments analyzing proteins specifically interacting with either GFP-Pol2C (A) or
endogenous Pol2A (B). Each point represents the normalized median SILAC ratio value for all quantified peptides assigned to that protein. Bait
proteins are shown in red. Core subunits of RNA polymerase II are shown in blue. A threshold PFL value of 40% was used, and all proteins
with a 40% or greater frequency value are shown in light green. The dotted red line shows an alternative x axis defined by the behavior of the
bait protein. Proteins within red ovals are RNA polymerase II subunits whose specific interaction with the bait shows a decrease of 2-fold or
more. C, identification of specific protein interaction partners with low M/L SILAC ratios using PFL frequencies. The graph shows each protein
group identified in the Pol2C data set plotted on the x axis and the normalized median SILAC value for that protein group plotted on the y axis
(similar to Fig. 2A). It has been color-coded to highlight all protein groups with a PFL value below 40% in dark green, whereas protein groups
showing a frequency value above 40% are shown in light green. Proteins belonging to the R2TP/prefoldin-like complex (11) are highlighted in
purple. D, same graph as A with the proteins of the R2TP/prefoldin-like complex highlighted in purple.
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concerned with comparing the differential behavior of individ-
ual proteins, the MS analysis and SILAC procedures directly
measure peptides. It must be remembered that the quality of
data can differ considerably between separate proteins in the
data set, which can vary in the number of peptides identified

and quantified, the total sequence coverage, and the accu-
racy and similarity in the SILAC ratios measured for separate
peptides assigned to the same protein. Consideration of
these parameters can assist with drawing reliable conclu-
sions, and they can be incorporated also into the visualiza-

TABLE I
Comparison of peptide data quality for RNA polymerase II subunits

All known RNA polymerase II subunits (Pol2A–Pol2L) except Pol2F were identified and quantified in the SILAC co-IP using GFP-Pol2C as
bait. They all show high sequence coverage and a large number of peptides identified and quantified, underlining the quality of the data. The
bait protein, GFP-Pol2C, is bold. log2(H/M) ratios of all subunits are normalized in the table so that log2(H/M) of Pol2C is 0. Subunits are listed
above the bait protein when their interaction with the bait was increased upon �-amanitin treatment (log2(H/M) versus 2C � 0), whereas
subunits are listed below when their interaction with the bait protein was decreased upon �-amanitin treatment (log2(H/M) versus 2C � 0).
Interactions are considered significantly affected when log2(H/M) versus 2C � 1 or log2(H/M) versus 2C � �1 (equivalent to a change in value
of 2-fold or greater).

Gene names Accession numbers No. of unique
peptides

Sequence
coverage

No. of peptides
quantified

SILAC
M/L ratio

log2(H/M) vs.
2C (H/M) S.D.

% %

POLR2K IPI00023975.1 3 53.4 3 56.2 0.51 3.4
POLR2L IPI00003311.1 4 74.6 9 13.9 0.45 8.5
POLR2J IPI00003310.2, IPI00873238.1, IPI00291359.3,

IPI00884938.1, IPI00878433.1, IPI00553186.2,
IPI00744926.1, IPI00472231.7, IPI00556199.1,
IPI00016841.3, IPI00748167.1, IPI00879159.1,
IPI00880135.1

4 57.5 21 21.2 0.35 15.5

POLR2B IPI00027808.1, IPI00873948.2, IPI00894355.1,
IPI00894141.1, IPI00418797.4, IPI00026445.3,
IPI00184886.3, IPI00894524.1, IPI00894248.1

81 62.1 272 21.5 0.35 16.6

POLR2C IPI00018288.1 17 85.8 73 12.4 0 24.1
POLR2A IPI00031627.3, IPI00385524.1, IPI00419565.3,

IPI00383337.1, IPI00784155.1
116 61.4 215 22.2 �0.97 36.1

POLR2D IPI00007283.1 6 62 5 5.7 �1.14 26.4
POLR2H IPI00003309.4, IPI00791019.1, IPI00790361.1,

IPI00791273.1
8 58 12 29.9 �1.15 31.5

POLR2G IPI00218895.6 11 74.4 14 11.2 �1.32 35.7
POLR2I IPI00006113.1 7 78.4 9 20.1 �1.33 42.1
POLR2E IPI00291093.3 10 58.1 23 27.6 �1.34 34.8

TABLE II
Embedding of putative specific interaction partners within contaminants at low SILAC M/L ratios

A selection of protein groups from the Pol2C data set with low SILAC M/L ratios (�5) are listed with their PFL frequencies and ranked by
M/L ratio from highest to lowest. Protein groups with a PFL value below the threshold (40%) and belonging to the R2TP/prefoldin-like complex
are bold.

Gene names Accession numbers
Normalized SILAC

M/L ratio
PFL frequency

value

KRT19 IPI00479145.2 5.03 100
UXT IPI00170862.1, IPI00002646.1, IPI00553080.1 3.85 16
ACTN4 IPI00013808.1, IPI00908458.1, IPI00845465.1, IPI00908776.1,

IPI00793285.1, IPI00903019.1, IPI00018829.2, IPI00217047.4,
IPI00217048.1, IPI00217044.1

3.43 52

RUVBL2 IPI00009104.7, IPI00909925.1 2.70 26
TUBB8 IPI00292496.1 2.01 77
PDRG1 IPI00027887.4 1.81 16
HIST2H2AB IPI00216730.3, IPI00829588.1 1.77 81
PFDN2 IPI00006052.3 1.7 26
VIM IPI00418471.6, IPI00552689.1, IPI00465084.6, IPI00793184.1,

IPI00013164.4, IPI00910602.1, IPI00021751.5, IPI00217507.5,
IPI00869219.1, IPI00853115.1, IPI00908745.1, IPI00237671.9,
IPI00868727.1, IPI00166205.2, IPI00477227.3, IPI00001453.2,
IPI00853283.1, IPI00744385.2, IPI00909238.1

1.62 97

RUVBL1 IPI00021187.4, IPI00788942.1, IPI00902501.1, IPI00796459.1 1.61 29
FLNC IPI00178352.5, IPI00413958.4, IPI00455021.3 1.44 77
PFDN6 IPI00005657.1 1.28 13
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tions of the experiments to provide further depth to the anal-
ysis of the MS data.

A key feature of the approach we describe is the generation
of a PFL that provides a dynamic list of all proteins identified
in co-IP experiments and annotation of their frequency of
detection. As opposed to the static bead proteome, the PFL
benefits from continuously being updated with every new
experiment that is performed. Thus, addition of new data sets
will improve both its reliability and its coverage. The PFL
described here contains 10,623 IPI numbers; this corre-
sponds to �12% of the IPI human proteome. However, this
can expand in the future to cover the entire human proteome
as more data sets from additional co-IP experiments are
added, incorporating different conditions and other cell types.
In contrast with the previous notion of characterizing a set of
putative contaminants to eliminate them from the data set, the
PFL approach does not stigmatize any protein as a contam-
inant. This more accurately reflects the fact that a given pro-
tein can interact specifically with certain baits and nonspecifi-
cally with others. Instead, the PFL provides an objective
annotation for all proteins that predicts their probability of
being a contaminant under a defined set of experimental
conditions. Applying this annotation to co-IP data sets facili-
tates discrimination between proteins with high versus low
probabilities of being either specific or nonspecific interaction
partners. This is further enhanced by the use of powerful
visualization tools, including the use of color coding to focus
attention on selected sets of proteins identified for further
analysis. Furthermore, it provides the ability to flexibly adjust
threshold values as determined by the user to create optimal
settings for each individual experiment.

Another advantage of the PFL approach is that it can be
filtered for the parameters from the data set under analysis,
e.g. cell extract, type of affinity matrix, etc., to create a cus-
tomized PFL that more accurately predicts contaminants rel-
evant to each new experiment. The spectrum of parameters
available for customization of the PFL includes all of the
dimensions and metadata recorded in the data repository.
PepTracker is designed to incorporate a laboratory manage-
ment tool to facilitate the detailed and consistent recording of
metadata from each experiment that can be used directly to
generate customized PFLs. Although the spectrum of dimen-
sions and experimental conditions incorporated in Pep-
Tracker is currently focused on human cells, this can in the
future be expanded to include a wider range of data, such as
other model organisms, and new dimensions, such as de-
tailed genotypes of the cells or organisms being analyzed. In
addition, the PFL is applicable also to other types of MS
analyses not involving SILAC data. For example, it can
enhance the analysis of label-free experiments by adding
additional objective criteria to identify putative nonspecific
contaminants.

The generation of the PFL involved adapting advanced
techniques from the BI field that deal well with the efficient

analysis of large data sets. The core concept of BI revolves
around understanding and modeling data in an appropriate
format that makes analysis easier and more intuitive for end
users. BI technology is designed for rapid interactive re-
sponse and works particularly well for train-of-thought anal-
ysis whereby response times from queries are rapid enough
(1–2 s) to allow a user to follow a sequence of ideas where
each answer can prompt another question. The advantages of
rapid response times on productivity have been well under-
stood for many years (34). To our knowledge, this is the first
direct application of such BI technology in cell biology or
proteomics research. BI techniques facilitate the analysis of
complex data and are essentially discipline-agnostic. They
have recently been successfully applied, for example, to the
analysis of historical science data, which has enhanced our
understanding of how Darwin developed the theory of evolu-
tion by natural selection (37). We suggest that wider applica-
tion of these techniques will be of great utility not only for
proteomics research but also for other research areas involv-
ing the collection and mining of very large data sets as is now
common in biomedical science.

Our work flow highlights the need for automation that can
deal with the integrated analysis of many large data sets that
are inherently multidimensional. We have described how the
PFL approach can be applied to objectively normalize data
and facilitate comparisons of information from separate ex-
periments. The PepTracker environment is capable of storing
many consistently annotated data sets and thus presents the
opportunity to integrate these data sets, along with associ-
ated metadata, to perform what we term a “superexperiment.”
The PFL represents an example of a superexperiment that
incorporates data from a large number of separate immuno-
affinity purification experiments. By using this approach to
encompass other types of quantitative proteomics experi-
ments, we aim to expand the superexperiment concept. For
example, other types of SILAC and MS analyses provide
information about the dynamics of distinct protein properties,
such as subcellular localization, turnover, and post-transla-
tional modifications (38). Future work will therefore develop
the use of BI technology within the PepTracker environment
to normalize and mine these combined data sets. It is also
envisaged that a web-based interface can be developed to
provide the wider community with access to the PFL and
related tools.
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